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O P T I M U M  O V E R T A K I N G  C O M P R E S S I O N  S H O C K S  W I T H  R E S T R I C T I O N S  

I M P O S E D  O N  T H E  T O T A L  F L O W - D E F L E C T I O N  A N G L E  

A. V .  O m e l ' c h e n k o  and V.  N .  U s k o v  UDC 533.6.011.72. 

The problem of optimization of gasdynamic variables behind a system of two steady oblique 
compression shocks with restrictions imposed on the flow-deflection angle is considered. The 
intervals of input parameters, in which this system turns out to be more effective than one 
shock, are determined. On the basis of an analysis of the system optimal for the static pressure, 
the physical meaning of the transition from one type of the reflected discontinuity to another is 
explained for the problem of interaction of overtaking oblique compression shocks. 

1. F o r m u l a t i o n  of  t he  P rob lem.  We consider a planar steady supersonic flow of a perfect inviscid 
gas passing through a system 5'2, which consists of two oblique compression shocks aligned in one direction. 
The ratio of static pressures behind the kth shock (Pk) and ahead of it (Pk-1) determines the shock strength 
Jk = Pk/Pk-1 (k = 1 and 2). As shown, e.g., in [1], for fixed values of the ratio of specific heats 3' and the Mach 
number Mk-1 ahead of the kth shock, the ratio fk/fk-1 of the values of all gasdynamic variables f behind 
and ahead of the shock (fk and fk-1, respectively) is uniquely determined by its strength. In particular, the 
relation between the Mach numbers on the shock is given by 

, ( M k )  _ 7 - 1  
#(Mk-1) Jk(1 + ~Jk)' #(M) = (1 + e)M 2 -  e, e = 7+1~" (1.1) 

The angle/3k of flow deflection by the shock is also uniquely expressed through the strength Jk of the kth 
shock and the Mach number Mk-1 ahead of it [1]: 

[ I ( l + e ) M 2 _ l  1 (1 - e)(Jk - 1) ] 
/3k = arctan Jk + ~ (1 + e)M2_l = ( f  --e-)(J~ - 1) " (1.2) 

It was shown in [1-3] that systems $2 are often more effective than a single compression shock and 
allow one to increase the magnitude of the gasdynamic variable f behind 5'2 compared to the corresponding 
values of f behind an isolated shock. In this case, the total flow-deflection angle in the system can far exceed 
the deflection angle on one shock. The latter hinders the use of such system in real technical devices [4]. 
On this basis, it seems to be an urgent matter to perform an analysis of the systems 5'2 with the following 
additional geometric restriction imposed on the flow-deflection angle: 

/~1 3 t- f12 = J~s = c o n s t .  (1.3) 

The aim of this work is an optimization study of the system 5'2 under restriction (1.3). 
2. T h e  D o m a i n  of  Exis tence  of t he  Sys tem 5'2. For a two-shock system $2 to exist, it is required 

that the flow behind the first shock remain supersonic. The latter holds if the strength J1 of the first shock is 
within the range [1, J.(M)]. Here M _= M0 is the free-stream Mach number and J.(M) is the shock strength 
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given by (1.1) provided that M1 = 1, which equals 

- ,/(,,_ 
j~l + V t - - ~  / + #" (2.1) 

The flow-deflection angle on such a shock is given by the formula 

fl, = arctan 1 q- e J, ( J ~ + ? ) T ( J ~  1) " (2.2) 

The dependence fl,(M) constructed using formulas (2.1) and (2.2) is shown in Fig. 1 (curve 1) (here and 
below, the calculation results for ~, = 1.4 are presented). For M ---+ oo, the function fl,(M) monotonically 
tends to the largest possible flow-deflection angle fla on the shock: 

1 - 6  
/7= = arctan 2-'-~" (~= -- 45.585~ (2.3) 

Restriction (1.3), together with (1.1) and (1.2), gives an implicit relation between the strengths J1 
and J2 of the impinging waves. Indeed, setting J1 from the interval [1, J,(M)], one can determine the flow- 
deflection angle ~l on the first shock from (1.2), and then, using relation (1.3), determine the flow-deflection 
angle ~2 on the second shock. 

It is well known (see, e.g., [5]) that there exist two different strengths of the shocks [(J~a) and J~))] 

which deflect the flow by one and the same angle ~2. The strength J ~ )  (of the weak shock) lies within the 

interval [1, Jz(M1)] and the strength j~8) (of the strong shock) is within the interval [Jr(M1), Jm(M1)]- The 
quantity Jm(M1) = (1 + 6)M 2-  6 determines the strength of the normal shock in the flow with the Mach 
number M1, and Jt(M~) corresponds to the shock, the deflection angle Jl(M1) on which attains its maximum 
at a given M1. The functions Jr(M) and Ji(M) have the following form [5]: 

+ 6 )  , ( i + 2 6 ) -  1. Jz 26 + / + ' (2.4) 
6 

[TJl-i (IH-6)H-(JI-F6)(I-6)(JI-I)] 
fll = arctan ~//+ 6 1 § 6Jl  2--'~1~'~-) " (2.5) 

The function #z(M) is plotted in Fig. 1 (curve 2). The function #L(M), as well as fl,(M), tends to/7= (2.3) as 
M --+ o G .  

Generally, the second compression shock can be either weak or strong. Here, for definiteness sake, we 
assume it to be weak [J2 = j~a)]. Then, the strength </2 of the second shock and, hence, any gasdynamic 
variable behind it, is uniquely expressed through the strength of the first shock, J1. 
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The condition J: ~< J,(M) is necessary, but not sufficient for the existence of a system 5'2 deflecting 
the flow by a preset angle fls > 0. Indeed, the maximum flow-deflection angle in 5'2 at a given J1 is calculated 
from the formula [6] 

tin(J1) = fl:(J:) + t/(M:). (2.6) 

The function tin(J1) (curve 1 in Fig. 2) is defined on the interval [1, J.(M)]. At the left end of the 
interval (J: = 1), the angle t , - (J : )  coincides with the maximum angle tt(M) (2.5) of flow deflection by a 
single shock (point I in Fig. 2). In the case ,/1 --~ J .  (2.1), the Mach number M1 ~ 1 and the limiting angle 
of flow deflection by the second shock tz(M1) ---* 0; hence, trn(J1) ---* f . (M) (2.2) (point t .  in Fig. 2). 

As shown in [6] there are two characteristic ranges of Mach numbers separated by the value 

1 +  + : -  : 27 

(Jg = 1.606 and Ml = 1.320), in which the function t in(J:)  behaves differently. In the interval M G [1, Mr] 
(Fig. 2a, M = 1.1), tim(J:) < tt(M) for each J1 G [1, J,] and this function has a minimum equal to tip(M) at a 
certain J: = Jp(M) (point p in Fig. 2). In the case M E [Mt, ~ )  (Fig. 25, M = 1.5), there appears a region of 
Ji,  where t in(J:)  > tt(M). In this region, the function under study reaches its maximum value f m =  tr(M) 
at J: = Jr(M) (point r in Fig. 2 b). As a consequence, beginning from the Mach number MI, the maximum 
angle of flow deflection by two shocks fr(M) exceeds the limiting angle of flow deflection by a single shock 
fit(M). 

According to the above-described behavior of the function fro(J1), one can distinguish four types of 
domains of existence of the system 5'2. 

(1) For ts < tp(M), the range of J: is a segment [1, Jb] (straight line 2 in Fig. 2), where Jb(fls) is the 
strength of a single weak compression shock, which deflects the flow by a specified angle fls (curve 3 in Fig. 2). 
Indeed, for each value of J1 taken from this range, the maximum angle of flow deflection by two shocks tim(J1 ) 
(2.6) exceeds the preset value of fls, and the system $2 can deflect the flow by the angle fs- If -/1 > Jb, then 
the angle of flow deflection by the first compression shock turns out to be larger than ts, and, to deflect the 
flow by a preset angle, the second compression shock should change its direction, which is impossible in the 
framework of the chosen formulation of the problem. 

(2) If ts e [tip(M), t.(M)], then, as shown in Fig. 2, straight line 4, which contains segments 4' and 4", 
intersects curve 1 at points v and w [the strengths Jv and Jw of the first shock in this case are determined as 
roots of the equation t in(J:)  = fs]- In the region [,Iv, J,~] (dashed segment of line 4), the system $2 cannot 
deflect the flow by the angle fs. Hence, for such fls, the domain of existence of $2 is subdivided into two 
subregions: [1, Jr] and [Jw, Jb] (segments 4' and 4" in Fig. 2). 

(3) For the values of ts from the interval [t.(M), tl(M)], the subregion [Jw, J,] disappears, and the 
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system $2 is defined on the segment J1 6 [1, Jr] (segment 5 in Fig. 2). 
(4) For M < Mz and fls > fit(M), the system $2 cannot exist. However, for M > Ml and ts e 

[/3t(M),/~,(M)], there is an interval J1 �9 [J~, Jr] (segment 6 in Fig. 25) in which the system of two shocks can 
deflect the flow by the angle fls- 

The dependences tp(M) and tr(M), which give the minimum and maximum values of the function 
tin(J1), were obtained in [6] (curves 3 and 4 in Fig. 1). As shown in Fig. 1, curves 1 and 3, which correspond to 
the functions/9.(M) and tip(M), practically coincide at all values of M. By contrast, curve 4, which corresponds 
to the function/9~(M) and issues from the point I on curve 2, rapidly deviates from curve 2; already at M = 2 
the maximum angle of flow deflection by two compression shocks exceeds the limiting angle of flow deflection 
by a single shock by 12%. 

3. S t a t i c -P res su re  Behavior  in the  Sys tem.  As an example, we consider the behavior of the static 
pressure behind $2. As shown in Sec. 2, restriction (1.3) allows one to uniquely determine the strength J2 of 
the second shock from a given value of 3"1. Hence, the dimensionless static pressure ,Is = p2/p  = J1J2 behind 
$2 (the strength of the system) depends only on J1. 

Figure 3 shows the qualitative behavior of the function Js(J1)  in 5"2. Depending on the values of the 
input parameters, the Mach number M and the angle/3s, one can distinguish nine characteristic domains on 
the plane (/3s, M) (see Fig. 1), in which the function under study behaves differently. 

In domains I, III, IV, VI, and VII (see Fig. 1) immediately adjacent to the vertical axis, the angle is 
ts  < tip(M), and, hence, the function Js(J1) is defined on the entire segment [i, Jb], where Jb is the strength 
of a single shock deflecting the flow by a preset angle fls. At the end points of this segment, the function 
assumes the same values equal to Jb: for J1 = 1, the strength is ,]2 = Js = Jb; for ,11 .= Jb, we have -/2 = 1, 
and, consequently, Js = Jb. 

The behavior of the function inside the interval [1, Jb] substantially depends on the free-stream Mach 
number (solid curves in Fig. 3). For small M (domain I in Fig. 1 bounded by curves 3 and 5), the function 
Js(J1)  on the segment (1 ,J  b) has only one extremum (maximum) at a certain J1 = J(1)(M,/3s) (Fig. 3a). 
With increasing M, the position of the maximum shifts to the right end of the interval (1, Jb). The transition 
to domain IV enclosed by curves 3, 5, and 6 (see Fig. 1) is accompanied by the appearance of a minimum 
J~ = J(2)(M, fls) at the left end of this interval (Fig. 3b), whereas the transition to domain III enclosed by 
curves 6 and 7 (see Fig. 1) is accompanied by vanishing of the maximum J(1)(M, fl~) (Fig. 3c). A further 
increase in the parameter M results in a nearly ideal repetition of the behavior of the function Js(J1): with 
approaching domain VII located between curves 7 and 8 (see Fig. 1), the minimum shifts to the right, and 
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the transition to domain VII gives rise to a maximum J(1)(M, ts) on the left end of the interval [1, Jb] (Fig. 
3d), whereas the transition to domain VI located above curve 8 (see Fig. 1) leads to disappearance of the 
minimum J(2)(M, fls) of the function under study. At large Mach numbers, the strength of the system on the 
segment (1, Jb) again has only one extremum, a maximum (Fig. 3a). 

As shown in Sec. 2, an increase in the parameter fie complicates the shape of the domain of definition 
of the function Js(J1). As a consequence, its behavior becomes more complex as well. For example, upon 
approaching the right boundary of domain I (curve 3 in Fig. 1), the maximum J(1)(M, ts) tends to the point 
Jp(M) of the minimum of the function #re(J1). For ts = tip(M) (i.e., on curve 3), these strengths coincides; in 
the case ts > tp(M) the maximum falls in the segment [Jr(M), Jw(M)] where no solutions exist. The latter 
results in that, in domain II, whose boundaries are curves 2 and 3, the strength of the system is monotonic on 
each subinterval of its existence. A similar behavior is observed when passing from domain IV to domain II. 

For M > Mi (2.7), an additional domain of existence of the function under study appears (domain V 
in Fig. 1 enclosed by curves 2 and 4). In this domain, the function Js(J1) behaves similarly as in domain II 
between curves 1 and 2. 

An increase in fin at large M gives rise to an additional domain VIII (see Fig. 1) with three extrema of 
the function Js(J1). This domain originates from the point w and is enclosed by curves 7 and 9. For all points 
of domain III lying to the right of the point w, the transition to domain VII, where two extrema are observed, 
gives rise to an inflection point of the function on the lower boundary of domain VIII, which splits into two 
extrema (a maximum and a minimum) with increasing M. A further growth of M results in the displacement 
of the left minimum toward the lower end of the segment [1, Jb] and its subsequent vanishing at the border 
with domain VII. 

As shown in Fig. 1, at sufficiently large M, domain VIII intersects domains IV, II, and V. The 
intersection of domains VIII and IV gives rise to an additional domain IX with four extrema, which is 
bounded by curves 3 and 6. The intersection of domains VIII and II is accompanied by disappearance of the 
right maximum in a manner similar to that observed for small M, and the intersection of domains V and VIII 
by disappearance of the right subinterval of existence of the function Js(J1). 

Thus, on the plane (ts, M), there are several characteristic regions, in which the static pressure behind 
the system S2 exhibits fundamental differences in its behavior. The aim of Sec. 4 is to find the boundaries of 
these domains and to determine the strength for which the function Js attains an extremum. 

4. Specia l  In tens i t i e s  and  Mach  Numbers .  The extremum values of the function Js(J1) and the 
boundaries of the characteristic domains can be found using the Lagrange method of undetermined multipliers. 
For constant M and ts ,  the Lagrange function 

L = ,Is + A(tl + t2 - -  ts)  (4.1) 

depends on three variables: wave strengths J1 and J2 and the Lagrangian multiplier A. 
Differentiating (4.1) with respect to J1, J2, and A and eliminating the Lagrangian multiplier A, we can 

easily obtain a system of two equations, one of which is relation (1.3) and the other has the form 

(9131 Ot2 Or2 
OA--~ + OA--~I OA2 = O. (4.2) 

As follows from the analysis performed in Sec. 3, the dependences fl~l (M) and t~2 (M) describing curves 
5 and 7 in Fig. 1 are found from Eqs. (1.3) and (4.2) for J1 --* 1. For the case J1 ~ 1, relation (4.2) reduces 
to a cubic equation in M2: 

3 
A,,(M2) n = 0, As = ,/2(1 + ~)2 _ 4r + ~)2, 

r*=0 

A2 = 4c(1 - ~)(J2 + r 2 - 1) - 2(1 - r - 1) - 4(1 - 2~)(J2 + t:) 2, 
(4.3) 

A1 = (1 - e)[4(1 - 2e)(J2 _ 1)(,/2 + ~) + 4(J2 + e)2 + (1 - e)J22(J2 - 1)2], 

Ao = -4(1 - e)2(J2 + r _ 1). 
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Substituting the larger (J~2) and medium (J~l) roots of (4.3) into Eq. (1.3), which in the case J1 ~ 1 takes 
the form ~ = ~2(M(J~), J~{) (i = 1, 2), one can obtain the desired dependences ~ t  (M) and ~7~2(M ). 

As shown in Fig. 1, curves 5 and 7 issue from the points Fi located on the vertical axis. Substitution 
of J2 = 1 into (4.3) yields the formula 

which gives the characteristic Mach numbers ME/. 
For increasing M, curve 7 tends to the maximum angle fla of flow deflection by a compression shock 

(2.3). In contrast to curve 7, curve 5 ends at the point l on curve 2. It can be proved that the Mach number 
Mt corresponding to this point is given by formula (2.7), 

As follows from the considerations in Sec. 3, to obtain the relations ~fl (M) and fl/2(M), which describe 
curves 6 and 8 in Fig. 1, one should pass to the limit ,/2 --* 1 in Eqs. (1.3) and (4.2). In this case, from (4.2), 
the explicit analytical expressions 

l + E J t  
# f ~ = I + e ( M } i - 1 ) = A ( B 4 - C )  ( i = 1 , 2 ) ,  A =  

(1 +  )(J1(1 - - 4 2)' ( 4 .5 )  

B = Jl(1 - 2e - e2) _ 2e2, C = 2~l/~(1 + ~J1)(J1 + ~) 

follow which relate the Mach numbers Mfl to the strength J1 of the first shock. Substituting the resultant 
values of Mfi into relation (1.3), which in the case J2 ~ I takes the form ~Tfi = ~l(M/~(J1),Jt) (i = 1, 2), 
one can obtain analytical expressions for curves 6 and 8. 

Curves 6 and 8, as well as curves 5 and 7, issue from the points with the coordinates (0, MF~) (4.4). For 
M --* oo, the dependence ~/I(M) tends to the value fla given by (2.3). The function fl/2(M), as M increases, 
asymptotically approaches the value 

~c = arctan ~/(1 + ~)(1 : 3~) 
2v ~ (Zc = 43.100 ~ 

To describe curve 9 in Fig. 1, we should find the extrema of the implicit function M(J1) given by 
Eqs. (1.3) and (4.2). As the calculations show, the minimum of the function implies the appearance of two 
additional extrema of the function J~(J1). 

Writing for M(J1) the. Lagrange function 

= M + + - + + 0A----~ 
differentiating it with respect to the variables J1, J2, A1, and A2, and eliminating the Lagrangian multipliers 
Ai (i -- 1.2), we obtain a system of three equations 

0Z~ 0#2 0#2 O~ 0~ 
tI/ _ 6qA1 -[- 0A~- 0A2 - 0, 051 0A~ --- 0, ]~w =/31 -b Z2. 

The first two equations permit determination of M and J2 from a given value of J1. The third equation allows 
one to determine the angle/3w of flow deflection by the system of two compression shocks with strengths J1 
and J2(J1)- Varying the value of J1 from unity to infinity, we can plot the dependence ~w(M) (curve 9 in 
Fig. 1). The point w, from which curve 9 issues, can be found by solving the system for J1 --* 1 (Mw = 2.282 
and j3w = 22.563~ 

5. In te r re la t ion  be tween  the  Two-Shock  Sys t em and  t h e  Compress ion  Wave.  To explain 
the nonmonotonic behavior of the static pressure in the system $2, we compare the behavior of the function 
Js(J1) with the strengths Jb and Jc of the compression wave and an ordinary Prandtl-Meyer compression 
wave, respectively, which deflect the undisturbed flow by the same preset angle fls. 

Dot-and-dashed straight lines corresponding to the strength J~ of the compression wave, which deflect 
the flow by the angle fls, are plotted in Fig. 3 for various values of M. The dashed curves in Fig. 1 show the 
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values of the parameters/~s and M obtained in [71 for which Jc = Jb (curves 10 and 11). As shown in [7], these 
curves issue from the points Fi (4.4) and fall within domains IV and VII. At all points belonging to these 
domains and not belonging to curves 10 and 11, the strengths are not equal (Je ~ Jb) (see Fig. 3b and d), hut 
close in value. The difference between them increases upon going farther from curves 10 and 11. In domain 
III, the strength Jc is far smaller than Jb (Fig -~ 3c), and in domains I and VI it is much greater (Fig. 3a). 

As noted above, in the case ~s ~< tip(M) (i.e., at the points belonging to domains I, III, IV, VI, and VII), 
the function Js(J1) at the end points of the interval [1, Jb] coincides with Jb. In domain III, the strength of the 
entire system exceeds Jb for all J1 E (1, Jb) (Fig. 3c) and has a maximum, whose value tends to the strength 
Jc of the compression wave. In domains I and. VI, the function Js(J1) also has one extremum (minimum) on 
the segment (1, Jb), whose value, again, tends to Je (Fig. 3a). Finally, in domains IV and VII, where Jr and 
Jb differ only slightly, the strength Js(J1) of the system oscillates near its "equilibrium position," i.e., the 
strength Jb. 

The above consideration shows that the system under study consisting of two compression shocks is 
a peculiar kind of a compression-wave model. The static pressure behind $2, which coincides with the static 
pressure behind a solitary shock at the end points of the interval [1, Jb], tends to the pressure behind an 
ordinary wave deflecting the flow by an equal angle j3s. The number of extrema of the function Js(J1) and 
their type depend on the sign and value of the difference between Je and ,lb. 

6. Physical  Mean ing  of t he  Re f l ec t ed  Discont inu i ty  in t h e  P r o b l e m  of I n t e r a c t i o n  be tween 
Over t ak ing  Compress ion  Shocks. During regular interaction between overtaking compression shocks 1 
and 2 (Fig. 3), there appear an outgoing resulting shock 5 and reflected discontinuity 3, as well as tangent 
discontinuity 4 situated in between them [8]. The reflected discontinuity can be either a rarefaction wave (Fig. 
3 a) or a compression shock (Fig. 3c). In a specific case, this discontinuity is a weak discontinuity (Fig. 3b 
and d) and the structure arising in this process is a triple shock-wave configuration. The strengths of the 
outgoing (5) and reflected (3) discontinuities can be found from the conditions of equal static pressures and 
flow-deflection angles on both sides of tangent discontinuity 4, i.e., from the solution of the system 

J1J2J3 = J h ,  fll + fl2-4-~3 = r 

Here Ji (i = 1, 2, 3, and 5) are the strengths of the corresponding discontinuities and fli are the angles of flow 
deflection on them. The plus at ~3 refers to a reflected rarefaction wave, and minus to a compression shock. 

The comparison between the static pressure behind the compression shock, the compression wave, and 
the system $2 under restriction (1.3) performed in Sec. 5 allows the following simple explanation for the 
appearance of a reflected discontinuity at the point where the overtaking compression shocks interact with 
one another. 

First, we consider the case in which the compression-wave strength far exceeds the strength of the 
compression shock, which deflects the flow by an equal angle (domains I and VI in Fig. 1). As shown in Sec. 5, 
the static pressure behind the system of two overtaking shocks exceeds the static pressure on one shock. When 
such shocks interact with one another, a centered rarefaction wave must appear (Fig. 3a) which levels out 
the static pressure on tangent discontinuity 4. This wave, first, decreases the static pressure behind $2, and, 
second, further deflects the flow by an angle greater than ~ = El + ~2, thus increasing the angle fl5 of flow 
deflection on shock 5 from the interaction point A and raising the static pressure behind this shock. 

The opposite situation is observed for.Jb >> Jc (domain III in Fig. 1). In this case, for an equal flow- 
deflection angle, the static pressure behind one shock exceeds the pressure behind the system $2 consisting of 
two shocks. The reflected discontinuity 3 resulting from the interaction between the two shocks should be a 
compression shock (Fig. 3c). On the one hand, it increases the static pressure behind $2; on the other hand, 
it decreases the static pressure behind shock 5 at the expense of a decrease in the flow-deflection angle fl5 on 
it compared to the angle/~s of flow deflection in the system $2. 

Finally, in the situation where Jb ~" Jc (domains IV and VII in Fig. 1), the function Js(J1) can be 
either greater or smaller than Jb (Fig. 3b and d). In the first case, the reflected discontinuity is a rarefaction 
wave, and, in the second, it is a compression shock. In both cases, its strength is close to unity. The exact 
equality J3 = 1 is attained at a certain J1 from the interval (1, Jb), and corresponds to a triple shock-wave 
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configuration (Fig. 3b). The boundaries fl~i(M) and fl/i(M) of domains IV and VII [formulas (4.3) and (4.5)] 
are boundaries of the domains of existence of triple configurations [9, 10]. 

Thus, transition from domain I, in which Jc > Jb, to domain III, in which the reverse inequality holds, 
leads to a change of the type of not only the extremum of the function J~(J1) in the system $2, but also the 
reflected discontinuity during the interaction between overtaking compression shocks, and to the occurrence 
of domain IV where triple configurations are possible. In a similar manner, the change of the sign of the 
difference Jc - Jb to the opposite upon going from domain III to domain VI is accompanied by the appearance 
of the second domain where triple configurations are possible (domain VII) and by the transition from the 
interaction with a reflected compression shock to the interaction with a reflected centered rarefaction wave. 

7. Add i t iona l  R e m a r k s .  (1) In Sec. 6, the interrelation between the problem of interaction of 
overtaking compression shocks and the problem of modeling the system 5'2 under imposed restriction (1.3) 
were demonstrated for the case in which the point with the coordinates (fls, M) belongs to the domains 
immediately adjacent to the ordinate axis. As noted above, an increase in the parameter fls makes the domain 
of definition of the function Js(J1) more complex and its behavior more intricate. An increase in fls in the 
problem of overtaking shocks is accompanied by the transition from regular to irregular interaction and by the 
appearance of regions where there is no solution of the problem of interest [5]. In this case, the boundaries of 
irregular interaction between the shocks and those of the domains where no solutions exist coincide with the 
boundaries of the characteristic regions plotted in Fig. 1 when performing an analysis of the system optimal 
from the viewpoint of the static pressure. Hence, two problems are interrelated for all values of M and fls- 

(2) The allowance for the shocks of the system $2 in domains I, III, IV, VI, and VII does not change 
the qualitative behavior of the static pressure behind the system. The latter follows from Fig. 3a-d, where 
the dashed curves show the values of the function J~ = J1J2J3, which gives the dimensionless static pressure 
behind the reflected discontinuity 3. As shown in Fig. 3, the reflected discontinuity decreases the amplitude 
of oscillations of the function Js(J1) around its "equilibrium position," the strength Jb, i.e., this discontinuity 
acts as a damper in the system $2. On the other hand, this discontinuity does not change the phase of these 
oscillations, and, hence, it leaves unchanged both the boundaries of the nonmonotonic behavior of the function 
J~(J1) and the number of its extrema. 

(3) Omel'chenko and Uskov [11, 12] found the boundaries of nonmonotonic behavior of the function 
Js(J1) in the systems $2 consisting of successively positioned compression shock and rarefaction wave [11], 
and rarefaction wave and compression shock [12]. The main feature distinguishing them from the system 
considered in this work is that the parameter fls in such systems can be both positive and negative. In the 
case ~s > 0, the boundaries of nonmonotonic behavior of the function Js(J1) in the systems with a rarefaction 
wave coincide with the boundaries of nonmonotonic behavior of the static pressure in the two-shock system, 
i.e., they are described by the functions fl~,(M) (4.3) and flf~(M) (4.5). In Sec. 6, it has been established 
that these functions simultaneously serve as boundaries of the domains where the change of the type of the 
reflected discontinuity is observed in the problem of interaction between overtaking compression shocks. In 
the problems of interaction of a compression shock with a rarefaction wave, the boundaries of nonmonotonic 
behavior of the function J~(J1) can be assumed to play the same role, i.e., they are boundaries of the domains 
where the type of the reflected discontinuity changes. 
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